
Methodology
Audit

https://abdk.consulting/


Estimation

and first steps

3

2

4

Code audit

Issues

processing

Report

1

Introduction
This methodology applies to various codebases, including 
smart contracts, regular programs, and more sophisticated 
constructs like circuits for zero-knowledge frameworks. It's 
important to note that different strategies may apply to a 
specific type of code.

2



1. Phase

Estimation

and first steps

We begin by engaging with Client to explain our process and 
how it operates. Ultimately, we aim to provide a clear picture of 
the expected duration and cost.

In order to estimate the overall price and time needed for 
the audit, we require specific data and information from Client. 
For an initial estimation we need the size of the codebase, 
typically measured in lines of code. From there, we apply a 
default price per line of code. We may adjust this price 
depending on factors such as the density of the code, which is 
calculated from  the code sample provided by Client. Once 
Client agrees preliminarily to our terms regarding the price per 
line and approximate timeline, we discuss the delivery date for 
the code.

 To secure a timeslot, we require an advance payment 
amounting to 50% of the initial estimate, typically paid 1-1.5 
months in advance. If the estimate is revised during the 
preparation for the audit, the advance payment remains the 
same. The advance payment is refundable before the audit 
commences.

3



We can also offer a Statement of Work, detailing code size, 
timeline, milestones, and payment schedules. We commit to 
completing the audit by a set deadline if Client provides the 
code and requires advance payment by the agreed-upon date. 
We also ask for supplementary materials to be provided:

� White paper 
� Description of the business logic or Yellow pape�
� Software requirements specificatio�
� Description of the code architecture

(required�

Occasionally we arrange a call close to the audit's starting 
date to clarify any issues found in the documentation. During 
this meeting Client can also elaborate on the intended 
functionality of the code. Once we get the information, we  start 
with the audit.

4



2. Phase

Code audit

While each codebase is unique, we typically follow several 
approaches that  work for most of our clients. We look into the 
supplementary materials for the code, including the 
documentation and the white paper, and assess their 
readability. If there are any problems with it, we ask for 
clarification. Then we proceed to the code analysis. It can be 
split into two parts: dynamic code analysis and static code 
analysis.

The static code analysis deals with simpler issues like 
documentation errors, comments, etc. We offer 
recommendations to enhance code practices specific to the 
programming language, suggesting simplification and more. 
These comments aim to improve code readability and enhance 
the overall audit quality. 

The dynamic code analysis is crucial as it involves 
simultaneous examination of documentation and code to 
identify and analyze issues comprehensively. We initially focus 
solely on the code, followed by a process akin to reverse 
engineering to compare our findings with specified 
requirements, including access controls. We meticulously 
examine access controls to ensure proper implementation

5



for internal and external access, evaluate control levels, user 
roles, permissions, and asset protection mechanisms. Special 
attention is given to objects handling user assets, ensuring 
alignment with intended business logic. We then delve into the 
internal logic of individual functions, assessing correctness and 
efficiency. Occasionally, we offer code snippets to assist clients. 
We compile a comprehensive report documenting various 
issues, including object definition, access levels, and code 
readability, as well as concerns related to access control, 
efficiency, and correctness. We also evaluate the use of 
appropriate data structures, algorithms, and external libraries 
for relevance to the code's tasks.

If any part of the code is unclear or if a critical issue is 
discovered, we promptly request further details via a private 
chat. Usually, this isn't for an immediate fix, as there may be 
numerous other issues to address, but to enable Client to 
investigate any related mistakes or potential implications. This is 
especially important if a similar issue exists in a previously 
deployed contract, as it allows for mitigation of any associated 
risks.

The code is audited by at least two independent auditors 
who cross-review each other's work to enhance error 
detection. This ensures that we always have a secondary 
opinion on the most critical code issues. 

As part of our process, Client is provided with a spreadsheet 
containing a list of identified issues.

6



3. Phase

Issues processing

Each issue comes with a code snippet extracted from a file 
where we identified an issue.

Sometimes, we expand on the most important issues by 
providing additional context where we deem it appropriate. This 
reflects examples of potentially malicious behaviors by 
adversaries. We may provide a code snippet to help improve 
the efficiency of the code. Certain issues are explained in 
greater detail, and they are ranked from the most critical to the 
least severe.

Critical issues directly affect the code functionality and may 
cause a significant loss of assets.

Major issues are either a solid performance problem or a 
sign of misuse: a slight code modification or environment 
change may lead to loss of funds or data. Sometimes it is an 
abuse of unclear code behavior which should be  double 
checked.

Moderate issues are not an immediate problem, but rather 
suboptimal performance in edge cases, an obviously bad code 
practice, or a situation where the code is correct only in certain 
business flows.

Recommendations contain code style, best practices and 
other suggestions.

7



Then we request Client to apply all necessary fixes, after 
which we review them collectively and address critical and 
major issues at no additional cost. Once the fixes are 
implemented, we examine the updated code and compare it 
with the previous version to assess how critical and major 
issues were resolved.

If there are minor fixes to review or new functionality added 
to the code during or after the audit process, we request an 
additional, appropriately priced, smaller audit to address these 
changes. 

At times, Client may disagree with the severity level we have 
assigned to an issue. This may happen if we have 
overestimated the importance of a bug or overlooked an 
additional check that Client is aware of and informs us about. 
For several issues, ongoing discussion about severity and 
importance may be necessary.

There are 3 possible outcomes:
� Client acknowledges the issue and its importance, 

then fixes it

� Client provides evidence that the issue exists but its effect 
is much less severe. Then the severity is downgraded

� Client provides evidence that the issue is non-existent. 
Then it is removed

Clients are also welcome to accompany any non-fixed issue 
with a comment providing an additional context. 

Finally we send an invoice for the second part of the 
payment. It is necessary to pay this invoice in order to get the 
final report. Once the comments are prepared and all issues 
are resolved, we are ready to proceed with the final audit 
report. 

8



4. Phase

Report

The report is provided free of charge.

We typically require 2-3 days to craft a report. It comprises 
existing issues (some of those elaborated) and 
recommendations, client comments, and code snippets.  
Should we need more time to produce a report, we promptly 
inform Client to facilitate their planning.  

Client is free to share the report publicly or keep it private. In 
the former case, which is most typical, we ask to add it to our 

 and possibly announce it on social 
networks.
public report database

Our most captivating audit cases for smart contracts: 

Github.com/abdk-consulting/audits/blob/main/uniswap/
ABDK_Uniswap_UniversalRouter_v_2_0.pdf

Github.com/abdk-consulting/audits/blob/main/contango/
ABDK_Contango_CoreV2_v_2_0.pdf

9

https://github.com/abdk-consulting/audits
https://github.com/abdk-consulting/audits/blob/main/uniswap/ABDK_Uniswap_UniversalRouter_v_2_0.pdf
https://github.com/abdk-consulting/audits/blob/main/uniswap/ABDK_Uniswap_UniversalRouter_v_2_0.pdf
https://github.com/abdk-consulting/audits/blob/main/contango/ABDK_Contango_CoreV2_v_2_0.pdf
https://github.com/abdk-consulting/audits/blob/main/contango/ABDK_Contango_CoreV2_v_2_0.pdf


ZK circuits:

Github.com/abdk-consulting/audits/blob/main/nil_foundation/
ABDK_NilFoundation_BlockchainVerifier_v_2_0.pdf

Github.com/abdk-consulting/audits/blob/main/blockswap/
ABDK_Blockswap_RPBS_v_3_0.pdf

Combined case:

Github.com/abdk-consulting/audits/blob/main/zklink/
ABDK_zkLink_CircuitsSmartContracts_v_6_0.pdf

10

https://github.com/abdk-consulting/audits/blob/main/nil_foundation/ABDK_NilFoundation_BlockchainVerifier_v_2_0.pdf
https://github.com/abdk-consulting/audits/blob/main/nil_foundation/ABDK_NilFoundation_BlockchainVerifier_v_2_0.pdf
https://github.com/abdk-consulting/audits/blob/main/blockswap/ABDK_Blockswap_RPBS_v_3_0.pdf
https://github.com/abdk-consulting/audits/blob/main/blockswap/ABDK_Blockswap_RPBS_v_3_0.pdf
https://github.com/abdk-consulting/audits/blob/main/zklink/ABDK_zkLink_CircuitsSmartContracts_v_6_0.pdf
https://github.com/abdk-consulting/audits/blob/main/zklink/ABDK_zkLink_CircuitsSmartContracts_v_6_0.pdf

