Report Customer
v. 1.0 StarkWare

Cairo Audit
Perpetual

eeeeeeeeeeeee d by

28th February 2022 \/\ ABDK

, Consulting

Contents

Changelog
Introduction

Project scope

1

2

3

4 Methodology
5 Our findings
6

Critical Issues

CVF-1. FIXED . . o e e e e e e e e e
CVF-2. FIXED . . e e e e e e e
CVF-3. FIXED . . . o e e e

7 Major Issues
CVF-6. FIXED . . . o e e e e e
CVF-9. FIXED . . . o e e e e e
CVF-12. FIXED . . o e e e e e e e e

8 Moderate Issues
CVF-7.INFO . . . e e
CVF-8.INFO . . . e e e e e
CVF-13. FIXED . . . o e e e e e e e e e e e
CVF-14. FIXED e e e e e e e e e e e e
CVF-15. FIXED . . . o o e e e e e e e e e
CVF-16. FIXED o e e e e e e e e e
CVF-17. FIXED . . . o e e e e e e e
CVF-18. FIXED . . . oo e e e e e e e e e e e
CVF-19. FIXED . . . o e e e e e e e e e e e
CVF-20. FIXED o e e e e e e e e e e
CVF-21. INFO . . . e e e e e
CVF-22. INFO e e e e
CVF-23. INFO . . e e e e e e
CVF-24. INFO . . . e e e e e e
CVF-25. FIXED e e e e e e e e e

9 Minor Issues
CVF-26. FIXED . . . o o e e e e e
CVF-27.INFO . . . e e e
CVF-28.INFO e e
CVF-29.INFO e
CVF-30. FIXED . . . o e e e e
CVF-31. INFO . . . e e

CVF-32. FIXED . . o o 24

CVF-33. FIXED . o oo 25
CVF-34. FIXED . . oo e 25
CVF-35.INFO . . . e 26
CVF-36.INFO . . . 26
CVF-37.INFO . . 26
CVF-38.INFO . .. 27
CVF-39.INFO . . . 28
CVF-40.INFO e 29
CVF-41.INFO . . . 29
CVF-42.INFO . . . 30
CVF-43. FIXED . . . oo e 30
CVF-44. FIXED . . o oo e 30
CVF-45.INFO 31
CVF-46.INFO 31
CVF-47.INFO . . . 32
CVF-48.INFO e 33
CVF-49. FIXED . . o oo 33
CVF-50. FIXED . . o oo e 34
CVFE-51.INFO . . . e 34
CVF-52. FIXED . . o o e 34
CVF-53.INFO . . 35
CVF-54.INFO 36
CVE-55. FIXED . . o oo 37
CVF-56.INFO 37
CVFE-57.INFO . . . 38
CVF-58.INFO . . . 39
CVFE-59.INFO . . . 39
CVF-60.INFO 40
CVF-61.INFO 40
CVF-62.INFO . . . e 40
CVF-63.INFO . . . 41
CVF-64. FIXED . . . oo e 41
CVF-65. FIXED . . o oo 41
CVF-66.INFO 42
CVF-67.INFO . . . e 42
CVF-68. FIXED . . . oo 42
CVF-69.INFO 43
CVE-70.INFO . . . e 43
CVF-71.INFO . . . 43
CVF-72.INFO . . e 44
CVF-73.INFO . . o 44
CVF-74.FIXED . . o o 44
CVFE-75.INFO . . . 45
CVF-76.INFO . . . 45

CVFE-77.INFO . . . e 45

CVF-78. FIXED . . o e 46

CVF-79.INFO . . . 46
CVF-80.INFO . . . 46
CVF-81. FIXED . . o oo 47
CVF-82.INFO . . . 47
CVF-83.INFO . . . 48
CVF-84.INFO 49
CVF-85. FIXED . . o oo 49
CVF-86. FIXED . . o oo 49
CVF-87.INFO . . . e 50
CVF-88.INFO . . . 50
CVF-89.INFO e 51
CVF-90. FIXED . . oo oo 51
CVF-91. INFO 52
CVF-92. FIXED . . o oo 52
CVF-93.INFO . . . 52
CVF-94.INFO e 53
CVF-95.INFO 53
CVF-96. FIXED . . o oo e 54
CVF-97.INFO . . . 54
CVF-98.INFO . . . 55
CVF-99.INFO . . . 55
CVF-100. INFO 55
CVF-101. INFO o 56
CVF-102. INFO o e 56
CVF-103. FIXED . . . o 57
CVF-104. INFO e e e e e 57
CVF-105. FIXED . . oo oo o 58
CVF-106. FIXED . . .o oo 58
CVF-107.INFO o 59
CVF-108. INFO o e 59
CVF-109. INFO o e e 59
CVF-110. INFO e e 60
CVF-111. INFOo e 60
CVF-112. INFO o e e 61
CVF-113. FIXED . . oo e 62
CVF-114. INFO e e e e e 62
CVF-115. FIXED . . . o o e 62
CVF-116. FIXEDo o 63
CVF-117.INFO o 63
CVF-118. INFO 63
CVF-119. INFO o e e 64
CVF-120. INFO e e 64
CVF-121. INFOo 64
CVF-122. INFO o 65

CVF-123. FIXED . . oo o 65

CVF-124. INFO o e e e e 65

CVF-125. FIXED . . oo oo 66
CVF-126. INFO 66
CVF-127.INFOo 66
CVF-128. INFO o 67
CVF-129. INFO o e e 67
CVF-130.INFO 67
CVF-131. INFOo 68
CVF-132. FIXED . . oo 68
CVF-133. INFO 69
CVF-134. FIXED . . . oo 69
CVF-135. FIXED . . . oo e 69
CVF-136. FIXED . . .o o 70
CVF-137.INFO o 71
CVF-138. FIXED . . oo 72
CVF-139. FIXED . . . o 72
CVF-140. FIXEDo e e 72
CVF-141. INFO e 73
CVF-142. FIXED . . o oo e 73
CVF-143. INFO o 73
CVF-144. FIXED . . . oo o 74
CVF-145. INFO o e e e e 74
CVF-146. FIXED o o 74
CVF-147.INFO e 75
CVF-148. INFO e 75
CVF-149. INFO e 75
CVF-150. INFO e 76
CVF-151. FIXED . .o oo o 76
CVF-152. INFOo 76
CVF-153. INFO o 77
CVF-154. FIXED . . .o o 77
CVF-155. INFO o e 77
CVF-156. INFO e 78
CVF-157.INFO e 78
CVF-158. FIXED . . .o o o 78
CVF-159. INFO 79
CVF-160. INFO e 79
CVF-161. INFOo e e 79
CVF-162. INFO 80
CVF-163. INFO 80
CVF-164. INFO e 81
CVF-165. INFO 81
CVF-166. INFO e 82
CVF-167. FIXED . . oo o 82
CVF-168. FIXED . . . oo o 82

CVF-169. INFO e 83

CVF-170. INFO e e 83

CVF-171. FIXED . .o oo 84
CVF-172. INFO 84
CVF-173. INFO 85
CVF-174. FIXED . . o oo e 85
CVF-175.INFO o e 86
CVF-176.INFO 86
CVF-177.INFO e 86
CVF-178.INFOo 87
CVF-179. INFO o 87
CVF-180. FIXED . . . o oo 87
CVF-181. INFO e e 88

CVF-182. INFO e 88

1 Changelog

I T S

28.02.22 A. Zveryanskaya Initial Draft
0.2 28.02.22 A. Zveryanskaya Minor revision
1.0 28.02.22 A. Zveryanskaya Release

ABDK 7

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is a
general review of the smart contracts structure, critical/major bugs detection and issuing
the general recommendations.

ABDK 8

3 Project scope

We were asked to review:

e Original Code

e Code with Fixes

Files:

exchange/definitions/

constants.cairo

exchange/

order.cairo

exchange/

signature_mes-
sage_hashes.cairo

perpetual/definitions/

constants.cairo

objects.cairo

perpetual/oracle/

oracle_price.cairo

perpetual/order/

limit_order.cairo

perpetual/output/

data_availability.cairo

program_output.cairo

ABDK

general_con-
fig_hash.cairo

perpetual_er-
ror_code.cairo

order.cairo

forced.cairo

general_config.cairo

validate_limit_order.cairo

program_input.cairo

https://github.com/starkware-libs/stark-perpetual/commit/9327c640e59bd15764833505560478d33aa6a8b1
https://github.com/starkware-libs/stark-perpetual/commit/0bf87e5c34bd9171482e45ebe037b52933a21689

perpetual/position/

add_asset.cairo

hash.cairo

status.cairo

perpetual/state/

state.cairo

perpetual/transactions/

batch_config.cairo
deposit.cairo
forced_withdrawal.cairo
oracle_prices_tick.cairo

transfer.cairo

perpetual/

execute_batch_utils.cairo

starkware/

ABDK

alloc.cairo
dict.cairo
hash_state.cairo
math_cmp.cairo

merkle_multi_up -
date.cairo

serialize.cairo

squash_dict.cairo

check_smaller_hold-
ings.cairo

position.cairo

update_position.cairo

conditional_trans-
fer.cairo

execute_limit_order.cairo

funding_tick.cairo
trade.cairo

withdrawal.cairo

execute_batch.cairo

cairo_builtins.cairo
find_element.cairo
hash.cairo

math.cairo

merkle_update.cairo

signature.cairo

funding.cairo
serialize_change.cairo

validate_state_transi-
tion.cairo

deleverage.cairo
forced_trade.cairo
liquidate.cairo

transaction.cairo

main.cairo

dict_access.cairo
hash_chain.cairo
invoke.cairo

memcpy.cairo

registers.cairo

small_merkle_tree.cairo

10

4

Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,

and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places as well as their
visibility scopes and access levels are relevant. At this phase, we understand overall
system architecture and how different parts of the code are related to each other.

Access Control Analysis. For those entities, that could be accessed externally,

access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used. We
also make sure that external libraries used in the code are up to date and relevant to
the tasks they solve in the code. At this phase we also understand data structures
used and the purposes they are used for.

We classify issues by the following severity levels:

Critical issue directly affects the smart contract functionality and may cause a
significant loss.

Major issue is either a solid performance problem or a sign of misuse: a slight code
modification or environment change may lead to loss of funds or data. Sometimes it
is an abuse of unclear code behaviour which should be double checked.

Moderate issue is not an immediate problem, but rather suboptimal performance in
edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

Recommendations contain code style, best practices and other suggestions.

ABDK 11

5 Our findings

We found 3 critical, and a few less important issues. All identified Critical issues have
been fixed.

Issues

Severity

Critical

Info Fixed

Major 0) 3

Fixed 6 out of 6 issues

ABDK 12

6 Critical Issues

CVF-1FIXED

+ Category Flaw e Source math.cairo

Description For high=low=2"128-1 we have diff=2*250-27122+2”128-1 >2"250.

Client Comment This is fixed in a later cairo version (There, we have assert_250_bit
instead of assert_le_250_bit and we check that 0 <= low < 2**122) . For now this is not
a problem because in all the places we use this function, we can assume the inputs are
between -2**224 and 2**224

61 # Asserts that a <= b. More specifically, asserts that b - a is in
— the range [0, 2**250).

96 assert diff = high * HIGH PART SHIFT + low
CVF-2 FIXED
+ Category Flaw + Source oracle_price.cairo

Description Should be ‘assert_nn_It' to avoid collisions in 'y".

66 assert nn le{range check ptr=range check ptr}(sig.timestamp,
— TIMESTAMP_BOUND)

71 x=sig.signed asset id, y=sig.external price *
< TIMESTAMP BOUND + sig.timestamp)

ABDK 13

CVF-3 FIXED

+ Category Flaw » Source order.cairo
Description Since ‘assert_nn_le' does not upper bound the second argument, it is possible

to submit a small ‘full_Lamount’ such that remaining_capacity is negative. It then possible
to submit a very large ‘'update_amount’ that far exceeds ‘full_amount '

95 assert nn le{range check ptr=range check ptr}(update amount,
< remaining capacity)

ABDK 14

48

46

85

7 Major Issues

CVF-6 FIXED

+ Category Flaw e Source math_cmp.cairo

Description This returns true for b<a+RANGE_CHECK_BOUND which includes many b
bigger than RANGE_CHECK_BOUND. The code should include ‘is_nn(b)’

Client Comment There is an assumption that b < RANGE_CHECK_BOUND. Added docu-
mentation.

return is le(a, b)

CVF-9 FIXED

o Category Flaw » Source general_config_hash.cairo

Description The common approach to hashing a multi-level structure is to hash the
metadata along with the data in order to ensure that hashes of different structures never
collide. In order to hash the metadata, one needs to design an injective encoding. One
way to do it is to define recursively, where the concatenation of structures S=S1+S2+...Sk
is encoded as Enc(S1+S2+...Sk) = hash(k || Enc(S1) || ... || Enc(Sk)) and Enc(F: felt) =
hash(1)

Client Comment We added a versioning to the hash. This way, we ensure the hash won't
collide with the hash of a future version that has a different structure.

func general config hash{pedersen ptr : HashBuiltin*}(
— general config ptr : GeneralConfig*) -> (

CVF-12 FIXED

o Category Unclear behavior e Source order.cairo

Description The "remaining_capacity” value is used before being assigned.

Recommendation Consider moving the error code calculation below the next statement.

if ids.update amount > ids.remaining capacity:

PN

ABDK 15

88

64

75

31

8 Moderate Issues

CVF-7 INFO

« Category Suboptimal e Source find_element.cairo

Description Binary search would be much more efficient for sorted arrays.

Client Comment Will be added to a future version of cairo. We will then update the
perpetual code to use that version.

func search sorted{range check ptr}(array ptr : felt*, elm size,
— n_elms, key) -> (

CVF-8INFO

o Category Procedural » Source position.cairo
Description The same error code is returned in two very different situations: when the

request public key is invalid (zero), and when the request public key doesn’t match the
position public key.

Recommendation Consider using different error codes for these two situations.

Client Comment The error codes are used only for testing in order to check that the cairo
code corresponds with our BE.

return (return_code=PerpetualErrorCode.INVALID PUBLIC KEY)

return (return_code=PerpetualErrorCode.INVALID PUBLIC KEY)

CVF-13 FIXED

+ Category Flaw * Source deposit.cairo

Description Should be "AMOUNT_UPPER_BOUND - 1" rather than just "AMOUNT_UP-
PER_BOUND".

assert nn_le{range check ptr=range check ptr}(tx.amount,
< AMOUNT_ UPPER BOUND)

PN

ABDK 16

CVF-14 FIXED

+ Category Flaw » Source deleverage.cairo

Description Should be "AMOUNT_UPPER_BOUND - 1" instead of just "AMOUNT_UP-
PER_BOUND".

34 assert nn_le{range check ptr=range check ptr}(tx.amount synthetic,
< AMOUNT UPPER BOUND)
assert nn_le{range check ptr=range check ptr}(tx.amount collateral,
— AMOUNT_UPPER BOUND)

CVF-15 FIXED

» Category Unclear behavior » Source execute_batch.cairo

Description The validity period together with several funding ticks for the same timestamp
value, allows reordering funding ticks with transactions, which could potentially be abused.

Recommendation Consider enforcing that funding and price ticks are always the first two
transactions in a batch, so all other transactions in the same batch use the same prices
and funding indexes.

Client Comment dYdX are the source of the all transactions. Even if we add such a
limitation, dYdX could censor price changes, delay execution until the next price updates,
etc.

84 batch config.general config.timestamp validation config.
— funding validity period)

CVF-16 FIXED

+ Category Flaw e Source execute_batch_utils.cairo

Description Should be "N_ASSETS_UPPER_BOUND - 1" instead of just "N_ASSETS_UP-
PER_BOUND".

107 assert le{range check ptr=range check ptr}(
general config.n synthetic assets info, N ASSETS UPPER BOUND)

PN

ABDK 17

48

36

105

CVF-17 FIXED

+ Category Flaw * Source liquidate.cairo

Description Should be "AMOUNT_UPPER_BOUND - 1" rather than just "AMOUNT_UP-
PER_BOUND".

assert nn_le{range check ptr=range check ptr}(tx.actual collateral,
< AMOUNT_ UPPER BOUND)

assert _nn_le{range check ptr=range check ptr}(tx.
— actual liquidator fee, AMOUNT UPPER BOUND)

CVF-18 FIXED

+ Category Flaw » Source forced_withdrawal.cairo

Description Should be "AMOUNT_UPPER_BOUND - 1" rather then just "AMOUNT_UP-
PER_BOUND".

assert nn_le{range check ptr=range check ptr}(tx.amount,
< AMOUNT_UPPER BOUND)

CVF-19 FIXED

o Category Flaw » Source forced_trade.cairo

Description Should be "AMOUNT_UPPER_BOUND - 1" rather than just "AMOUNT_UP-
PER_BOUND".

assert nn_le{range check ptr=range check ptr}(tx.amount collateral,
< AMOUNT_UPPER BOUND)

assert nn le{range check ptr=range check ptr}(tx.amount synthetic,
< AMOUNT_UPPER BOUND)

ABDK 18

CVF-20 FIXED

+ Category Documentation » Source funding.cairo

Description This statement is vague and difficult to verify.

Recommendation Consider giving explicit bounds for arguments in assumptions and
asserting in the code that the arithmetic operations do not yield a number beyond certain
bound.

Client Comment There’s no need to give explicit bounds because current_collateral_fxp is
around 95 bits and the overflow limit is more than 251 bits. We documented this better.

25 # Assumption: current collateral fxp does not overflow, it is a sum
— of 95 bit values.

CVF-21INFO

« Category Unclear behavior e Source add_asset.cairo

Description The public key verification is bypassed in case delta is zero.

Client Comment This verification is verified also in position_add_collateral and both po-
sition_add_collateral and position_add_asset are only used in update_position. Therefore
we decided to move the public key verification to update_position altogether.

126 |if delta ==
return (

137 # Verify public_ key.

ABDK 19

CVF-22 INFO

« Category Unclear behavior « Source signature.cairo

Description The actual signature variables are not used directly but rather elsewhere.
This is error-prone. It is also unclear if the last two parameters are asserted to be the
signature data, or it is just checked that the prover knows the signature. Note that in the
latter case it becomes difficult to verify signatures from a public input.

Recommendation Consider making the signature part of the builtin

Client Comment In the future we intend to verify it as well. Unfortunately, Cairo doesn't
support it. In the meantime, we keep the interface as if it does, for future proofing.

7 func verify ecdsa signature{ecdsa ptr : SignatureBuiltin*}(
message, public key, signature r, signature s):

CVF-23 INFO

o Category Unclear behavior » Source oracle_price.cairo

Description No range check is done for factors.
Recommendation Consider adding them here or into the assumptions.

Client Comment The external price is checked at the start of the function. the resolutions
are checked in validate_general_config in execute_batch_utils.cairo. FXP_32_ONE and
EXTERNAL_PRICE_FIXED_POINT_UNIT are constants.

115 1let numerator = sig.external price * collateral resolution *
— FXP_32 ONE

117 tempvar denominator = asset info.resolution *
— EXTERNAL PRICE FIXED POINT UNIT

ABDK 20

27

CVF-24 INFO

« Category Suboptimal * Source hash_state.cairo

Description This function is very complicated and uses too much memory. It
can be efficiently computed as func hash_update_inner{hash_ptr : HashBuiltin*}(
data_ptr : felt*, data_length : felt, input_hash : felt) = (out : felt): if data_length=0
return input_hash hash_ptr.x=input_hash hash_ptr.y=[data_ptr] tempvar start_po-
sition=0; hash_loop: tempvar i = [ap-1]+1; #index of data we are feeding
(hash_ptr+i*HashBuiltin.SIZE).x = (hash_ptr+(i- 1) *HashBuiltin.SIZE).result #chaining
the computation (hash_ptr+i*HashBuiltin.SIZE).y = [data_ptr+i] # feeding the data jmp
hash_loop if i+1!=data_length let hash_ptr = hash_ptr+data_length*HashBuiltin.SIZE return
out=(hash_ptr-HashBuiltin.SIZE).result

Client Comment /n cairo, calculating from an index the data that we need is as expensive
as keeping an extra field for the data. This is because only the amount of instructions
(cairo steps) is the thing that matters, not the amount of memory we used.

func hash update inner{hash ptr : HashBuiltin*}(

CVF-25 FIXED

o Category Flaw » Source general_config_hash.cairo

Description Here array elements are hashed, but array lengths are not. This could lead to
hash collisions.

Recommendation Consider hashing the array lengths along with array elements.

25 let (hash state ptr) = hash update(

hash state ptr,
synthetic asset info ptr.oracle price signed asset ids,
synthetic asset info ptr.n oracle price signed asset ids)

31 let (hash state ptr) = hash update(

hash state ptr,
synthetic asset info ptr.oracle price signers,
synthetic asset info ptr.n oracle price signers)

ABDK 21

9 MinorlIssues

CVF-26 FIXED

o Category Documentation » Source withdrawal.cairo

Description 0x6 is 3 bits rather than 10.

Client Comment |t is 0x6 written in 10 bits.

31 # w2= 0x6 (10 bit) || vault from (64 bit) || nonce (64 bit) ||
< expiration timestamp (32 bit)

CVF-27 INFO

» Category Readability » Source withdrawal.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

39 func withdrawal hash(
40 pedersen ptr : HashBuiltin*, withdrawal : Withdrawal*,
— asset id collateral) -> (
pedersen ptr : HashBuiltin*, message):

55 | func execute withdrawal(
pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,
carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,
tx : Withdrawal*) -> (
pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
<~ SignatureBuiltin*,
60 carried state : CarriedState*, outputs : PerpetualOutputs*):

ABDK 22

CVF-28 INFO

« Category Procedural » Source withdrawal.cairo

Recommendation Consider adding an assert that the results fits into a field element

Client Comment This change is of low priority and will reduce the efficiency of the code.
We should consider adding a comment if it isn’t clear.

43 let packed message = WITHDRAWAL

let packed message = packed message * POSITION ID UPPER BOUND +
< withdrawal.position id

let packed message = packed message * NONCE UPPER BOUND + withdrawal
— .base.nonce

let packed message = packed message * AMOUNT UPPER BOUND +
— withdrawal.amount

let expiration timestamp = withdrawal.base.expiration timestamp

let packed message = packed message *
< EXPIRATION TIMESTAMP UPPER BOUND + expiration timestamp

let packed message = packed message * %[2**49%] # Padding.

CVF-29 INFO

o Category Readability » Source deposit.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big and of relatively low priority.

21 func execute deposit(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : Deposit*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

ABDK 23

CVF-30 FIXED

+ Category Documentation * Source deposit.cairo

Description A comment is needed why we shift the amount here.

Recommendation A comment is needed why we shift the amount here.

58 assert modification.biased delta = tx.amount + AMOUNT UPPER_BOUND

CVF-31INFO

o Category Readability » Source deleverage.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

26 func execute deleverage(
pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,
carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,
tx : Deleverage*) -> (
30 pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,
carried state : CarriedState*, outputs : PerpetualOutputs*):

CVF-32 FIXED

o Category Documentation » Source deleverage.cairo

Description It should be explained, where it is checked that without reducing the collateral
the transaction is valid.

117 # Validates that deleverage ratio for the deleverager is the maximal
< it can be while being valid
for the deleveragable. In other words, validates that if we reduce
— the collateral the
deleveragable gets from the transaction by 1, the transaction is
< invalid.

PN

ABDK 24

CVF-33 FIXED

« Category Readability * Source state.cairo

Recommendation Consider using the "let local” syntax to simplify the code.
57 local squashed positions dict end : DictAccess*
59 | let (squashed positions dict end) = squash dict(
63 squashed positions dict end = squashed positions dict end
66 | local squashed orders dict end : DictAccess*
68 let (squashed orders dict end) = squash dict(

72 | squashed orders dict end = squashed orders dict end

CVF-34 FIXED

o Category Readability » Source state.cairo

Description This should be done via the "alloc” function.
58 %{ 1ids.squashed positions dict = segments.add() %}

67 %{ 1ds.squashed orders dict = segments.add() %}

ABDK

CVF-35INFO

« Category Readability * Source state.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big and of relatively low priority.

115 func shared state apply state updates(
hash ptr : HashBuiltin*, shared state : SharedState*,
squashed carried state : SquashedCarriedState*,
— general config : GeneralConfig*) -> (
hash ptr : HashBuiltin*, shared state : SharedState*):

CVF-36 INFO

« Category Documentation » Source state.cairo

Description It is unclear what is "new_positions_root" at the right side of the assignment.

128 9%{ ids.new positions root = new positions root %}

138 %{ ids.new orders root = new orders root %}
CVF-37 INFO
o Category Suboptimal » Source state.cairo

Description The first two lines can be swapped so that there is no need to subtract 1 later.

Client Comment We use output_start_ptr in serialize_word. Swapping the lines would
force us to substract 1 in that line so it will not be more efficient.

161 local output start ptr : felt* = output ptr
164 let output ptr = output ptr + 1

177 let size = cast(output ptr, felt) - cast(output start ptr, felt) - 1

PN

ABDK 26

CVF-38 INFO

« Category Readability

e Source main.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

26 | func main(

30

ABDK

output ptr : felt*, pedersen ptr : HashBuiltin%*,
— range check ptr,

ecdsa ptr : SignatureBuiltin*) -> (

output ptr : felt*, pedersen ptr : HashBuiltin%*,
— range check ptr,

ecdsa ptr : SignatureBuiltin*):

27

CVF-39 INFO

« Category Readability * Source execute_batch.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

33 func execute transaction(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*,
— batch config : BatchConfig*,

tx : Transaction*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

248 func execute batch transactions(

250

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*,
— batch config : BatchConfig*,

n _txs : felt, tx : Transaction*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

284 func execute batch(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,

carried state : CarriedState*, program input : ProgramInput
< *, outputs : PerpetualOutputs*,

txs : Transactions*, end system time) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

28

CVF-40INFO

+ Category Documentation » Source execute_batch_utils.cairo

Description It is unclear what exactly this functions validates.
Recommendation Consider documenting.

Client Comment This function is a helper function and what it does is best explained by
the documentation of the external function. Documenting this function will only cause
confusion.

13 func validate funding indices in general config inner(

CVF-41INFO

+ Category Readability » Source execute_batch_utils.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.
51 func validate assets config inner(
range check ptr, synthetic assets info ptr :

— SyntheticAssetInfo*, n synthetic assets info,
prev_asset id) -> (range check ptr):

82 func validate assets config(range check ptr, general config
— GeneralConfig*) -> (range check ptr):

92 | func validate general config(range check ptr, general config
— GeneralConfig*) -> (range check ptr):

ABDK 29

CVF-42 INFO

« Category Procedural » Source execute_batch_utils.cairo

Description In many other files, "assert_le(x, y - 1)" is used instead of "assert_lt(x, y)".
Consider using consistent approach across the code.

Client Comment We decided to keep it.

55 assert lt{range check ptr=range check ptr}(prev _asset id,
< ASSET _ID UPPER BOUND)

58 assert lt{range check ptr=range check ptr}(prev _asset id,
— synthetic assets info ptr.asset id)

CVF-43 FIXED

« Category Unclear behavior » Source transfer.cairo

Description There is already a "nonce” field inside "OrderBase"” struct. Why to have
another nonce outside?

23 member base : OrderBase*
member nonce : felt

CVF-44 FIXED

o Category Suboptimal » Source transfer.cairo

Description This field is not used.

Recommendation Consider removing it.

24 | member nonce : felt

ABDK 30

CVF-45 INFO

« Category Readability e Source transfer.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

42 func transfer hash(pedersen ptr : HashBuiltin*, transfer : Transfer
— *, condition : felt) -> (
pedersen ptr : HashBuiltin*, message):

64 func execute transfer(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : Transfer*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

CVF-46 INFO

o Category Readability e Source transaction.cairo

Recommendation Consider defining all the transaction structs in this file to make the

whole picture easier to understand.

Client Comment We prefer splitting the files because then when we add a new transaction

there are less places that we need to edit and each transaction is self contained.

17 'member tx : felt*

ABDK 31

CVF-47 INFO

« Category Readability * Source trade.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

26 func execute trade(

30

ABDK

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : Trade*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

32

CVF-48 INFO

« Category Readability * Source oracle_prices_tick.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

26 | func insert oracle prices until asset id(
range check ptr, oracle price ptr : OraclePrice*,
— n_oracle prices, asset id bound,
new oracle price ptr : OraclePrice*) -> (range check ptr,
< n_new_oracle prices):

50 | func create new oracle prices and validate tick(

range check ptr, prev oracle price ptr : OraclePrice*,
< n_oracle prices,

tick price ptr : OraclePrice*, n tick prices,
— last tick asset id,

batch config : BatchConfig*, new oracle price ptr :
< OraclePrice*) -> (

range check ptr, n new oracle prices):

140 func execute oracle prices tick(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
< outputs : PerpetualOutputs*,

tx : OraclePricesTick*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

CVF-49 FIXED

o Category Procedural e Source oracle_prices_tick.cairo
Description In other places such checks look like: as-
sert_le{range_check_ptr=range_check_ptr}(last_tick_asset_id, ASSET_ID_UPPER_BOUND
- 1)

56 assert le{range check ptr=range check ptr}(last tick asset id + 1,
< ASSET _ID UPPER BOUND)

PN

ABDK 33

CVF-50 FIXED

+ Category Documentation * Source oracle_prices_tick.cairo

Description Should be "not smaller” instead of "larger”.

147 # Check that new timestamp is larger than previous system time.

CVF-51INFO

o Category Readability » Source liquidate.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

29 | func execute liquidate(
30 pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
< SignatureBuiltin*,
carried state : CarriedState*, batch config : BatchConfig*,
< outputs : PerpetualOutputs*,
tx : Liquidate*) -> (
pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,
carried state : CarriedState*, outputs : PerpetualOutputs*):

CVF-52 FIXED

o Category Suboptimal » Source liquidate.cairo

Description This could be simplified as: assert_nn_le{range_check_ptr=range_check_ptr}(syn-
thetic_delta, -initial_liquidated_asset_balance)

95 assert _in range{range check ptr=range check ptr}(
-synthetic delta, initial liquidated asset balance, 1)

ABDK 34

CVF-53 INFO

« Category Unclear behavior + Source liquidate.cairo

Description This checks that the price is fine from the liquidator's point of view. How is it
guaranteed that the price is fair for the party being liquidated?

Client Comment There is no order for the liquidated party. This is because the liquidation
is done without the liquidated party’s agreement because the liquidated party has reached
a liquidatable status. Therefore the liquidation doesn’t need to be fair for that party.

130 let (pedersen ptr, range check ptr, ecdsa ptr, carried state) =
— execute limit order(

ABDK 35

CVF-54 INFO

« Category Readability » Source funding_tick.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

23 | func validate funding index diff in range(
range check ptr, max funding rate, funding index diff,
— timestamp diff, price) -> (
range check ptr):

53 func validate funding tick inner(

range check ptr, prev_funding index ptr : FundingIndex*,

new funding index ptr : FundingIndex*, oracle price ptr :
— OraclePrice*,

last new funding asset id, args :
— ValidateFundingTickInnerArgs*) -> (

range check ptr, prev _funding index ptr : FundingIndex*,

new funding index ptr : FundingIndex*, oracle price ptr :
— OraclePrice*):

161 func validate funding tick(
range check ptr, carried state : CarriedState*,
— general config : GeneralConfig*,
new funding indices : FundingIndicesInfo*) -> (
< range_check ptr):

205 func execute funding tick(
pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,
carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

ABDK 36

CVF-55 FIXED

+ Category Documentation » Source funding_tick.cairo

Description Should be "not smaller” instead of "larger”.

212 # Check that new timestamp is larger than previous system time.
If signatures will be required to verify OraclePricesTick, then
— the timestamps for the
oracle prices in the carried state will be verified here.
assert le{range check ptr=range check ptr}(
carried state.system time, new funding indices.funding timestamp
—)

CVF-56 INFO

» Category Readability e Source forced_withdrawal.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

22 func execute forced withdrawal(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : ForcedWithdrawal*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

ABDK 37

CVF-57 INFO

« Category Readability e Source forced_trade.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions

29 func try to trade(

30

range check ptr, carried state : CarriedState*,
< position buyer : Position*,
position seller : Position*, public key buyer,
— public _key seller, synthetic asset id,
amount collateral, amount synthetic, general config
— GeneralConfig*) -> (
range check ptr, position buyer : Position*, position seller
< : Position*, return code):

91 func execute forced trade(

ABDK

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : ForcedTrade*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

38

47

50

71

CVF-58 INFO

« Category Suboptimal e Source forced_trade.cairo

Description This should be executed only in case the buyer’'s position update was suc-
cessful.

Client Comment This should be classified as suboptimal and not flaw. Since forced trade
is rare, added a comment on the potential optimization instead.

let (range check ptr, local updated position seller, local
— funded position seller,
local return code b) = update position(
range check ptr=range check ptr,
position=position seller,
request public key=public key seller,
collateral delta=amount collateral,
synthetic asset id=synthetic asset id,
synthetic delta=-amount synthetic,
global funding indices=carried state.global funding indices,
oracle prices=carried state.oracle prices,
general config=general config)

CVF-59 INFO
o Category Unclear behavior » Source forced_trade.cairo

Description This potentially hides the second error.

Client Comment This is not an issue. Because A was executed before B, It makes sense
to return A’s error. We could add a comment about it but IMO it's unnecessary

return_code = return code a

ABDK 39

CVF-60 INFO

« Category Suboptimal * Source math.cairo

Description This function could be simplified as: [ap] =1;ap++ [ap]=[ap - 1]/ value

Client Comment The suggested code is less efficient. The current code performs 1 cairo
step in the succesive flow (the negative flow is irrelevant as the program crashes). The
suggested code performs 2 cairo steps

4 func assert not zero(value):

CVF-61INFO

o Category Suboptimal » Source math.cairo

Description This function could be simplified as: letdiff =b -a[ap]=1;ap++[ap]=1[
ap - 1]/ diff

Client Comment The suggested code is less efficient. The current code performs 1 cairo
step in the succesive flow (the negative flow is irrelevant as the program crashes). The
suggested code performs 2 cairo steps

15 func assert not equal(a, b):

CVF-62 INFO

o Category Documentation » Source math.cairo

Description This function covers also negative ‘a’ which should be stated in the comment.

Client Comment The function covers some of the negative values. | don't think there is
an elegant way do describe it besides what is already written.

33 # Verifies that a <= b (or more precisely 0 <= b - a <

— RANGE_CHECK BOUND) .
func assert le{range check ptr}(a, b):

39 # Verifies that a <= b - 1 (or more precisely 0 <=b - 1 - a <
< RANGE CHECK BOUND) .

PN

ABDK 40

35

41

47

CVF-63 INFO

« Category Suboptimal * Source math.cairo

Description It would be more efficient to use range check builtin here directly, rather than
call other functions.

Client Comment This is dwarved by the range check usages and reduces readability
assert nn(b - a)

assert le(a, b - 1)

CVF-64 FIXED
o Category Documentation e Source math.cairo
Description For "a"” this is not an assumption but rather an enforced constraint.

Prover assumption: a, b < RANGE CHECK BOUND.

CVF-65 FIXED

» Category Documentation » Source math.cairo

Description This comment is inaccurate. The actual condition being checked is more
complicated. Consider explaining the real condition being checked.

54 # Asserts that value is in the range [lower, upper).

ABDK 41

70

76

106

119

123

CVF-66 INFO

« Category Procedural e Source math.cairo

Description The RANGE CHECK BOUND constant should have been used here

Client Comment This function doesn't exist in our latest cairo version.

const HIGH PART SHIFT = %[2**250 // 2**128 %]

assert range check builtin.bound == 2**128
CVF-67 INFO
+ Category Bad datatype * Source math.cairo

Description These constants should be named and declared in some globally imported
file

Client Comment These constants can have different values depending on the function
they are in and are used with this value only here.

(PRIME - 1) >> 128%]

const MAX HIGH = %]
[(PRIME - 1) & ((1 << 128) - 1)%]

const MAX LOW = %

assert value = high * %[2**128%] + low

CVF-68 FIXED

+ Category Readability * Source math.cairo

Description Should be MAX_HIGH-1

assert le(high, MAX HIGH)

ABDK 42

131

169

190

177

180

CVF-69 INFO

« Category Suboptimal * Source math.cairo

Description This function can be computed via ‘assert_It_felt' to avoid code duplication

Client Comment Computing one function with the other will reduce its efficiency.

func assert le felt{range check ptr}(a, b):

CVF-70INFO

o Category Suboptimal * Source math.cairo

Description Either of these functions can be computed via the other one. Consider
dropping one of them

Client Comment Using one function in the other will reduce the efficiency of the function.
func abs value{range check ptr}(value) -> (abs value):

func sign{range check ptr}(value) -> (sign):

CVF-71INFO

+ Category Readability e Source math.cairo

Description Using the same name for different variables is discouraged

Client Comment See CVF-153.

tempvar abs value = value * (-1)

return (abs value=abs value)

ABDK 43

214

218

234

CVF-72 INFO

+ Category Documentation e Source math.cairo

Description It is unclear what ‘assumption’ means. Is it the set of inputs on which the
function is correct? Does it fail on other ones?

Client Comment If this assumption is not true, the function’s result is undefined.

Assumption: 0 < div <= PRIME / rc_bound.

CVF-73 INFO

+ Category Documentation e Source math.cairo

Description Should be '<PRIME’

Client Comment g < rc_bound, but g+1 might be equal to rc_bound, and div <= PRIME /
rc_bound. Therefore (q + 1) * div might be equal to PRIME

#q * div+ r < (q + 1) * div <= rc _bound * (PRIME / rc bound) =
— PRIME.

CVF-74 FIXED
« Category Documentation e Source math.cairo
Description Should be either "0 <=r <= div-1" or "0 <=r < div".

Returns q and r such that. -bound <= q < bound, 0 <= r < div -1
— and value = q * div + r.

ABDK 44

16

CVF-75INFO
« Category Procedural + Source math_cmp.cairo

Description If this is a constant affecting the range check builtin, it should be in some
globally imported file

Client Comment Currently, we only use it in math_cmp, so | don't think there is a reason
to move it right now.

const RC BOUND = %[2**128 %]

CVF-76 INFO
o Category Suboptimal » Source math_cmp.cairo

Description This function is similar to ‘assert_nn’".
Recommendation Consider deduplicating the code.
Client Comment Both of them are important. you can not use assert_nn in is_nn, and

assert_nn is simpler.

func is nn{range check ptr}(a) -> (res):

CVF-77 INFO
o Category Suboptimal * Source math_cmp.cairo
Description this code part is redundant since this case can be handled by 'need_felt_com-

parison’

Client Comment Even though the flow where you don’t need felt comparison can be
handled in the same way as the flow where you do need it (need_felt_comparison), we
handle it specially because we can handle it more efficiently.

24 %{ memory[ap] = 0 if 0 <= ((-ids.a - 1) % PRIME) <

— range_check builtin.bound else 1 %}
jmp need felt comparison if [ap] != 0; ap++
assert [range check ptr] = (-a) - 1
let range check ptr = range check ptr + 1
return (res=0)

PN

ABDK 45

41

43

95

CVF-78 FIXED

+ Category Documentation * Source math_cmp.cairo

Description This comment is inaccurate, Actually, the function checks that: 0 <= a <
RANGE_CHECK_BOUND and a <= b < a + RANGE_CHECK_BOUND

Returns 1 of 0 <= a <= b < RANGE_CHECK BOUND.
Returns 0 otherwise.

CVF-79 INFO

o Category Suboptimal » Source math_cmp.cairo

Description This function is similar to ‘assert_nn_le'. Consider deduplicating the code.

Client Comment Both of them are important. you can not use assert_nn_le in is_nn_le,
and assert_nn_le is simpler.

func is nn le{range check ptr}(a, b) -> (res):

CVF-80INFO

o Category Overflow/Underflow e Source execute_limit_order.cairo

Description Consider adding an assert that this value is positive.

Client Comment This is not considered a bug. If the user’s order allows the operator to
take more fees than the gained collateral it’s the user’s problem

assert collateral delta = actual collateral - actual fee

ABDK 46

CVF-81 FIXED

« Category Procedural » Source program_output.cairo

Description There seems to be ‘get_label_location’ function for the same purpose

104 callback=asset config hash serialize + pc_ - ret pc label)
115 callback=modification serialize + pc_ - ret pc label)
124 callback=forced action serialize + pc_ - ret pc label)
CVF-82INFO
» Category Readability » Source conditional_transfer.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

24 func execute conditional transfer(

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, batch config : BatchConfig*,
— outputs : PerpetualOutputs*,

tx : ConditionalTransfer*) -> (

pedersen ptr : HashBuiltin*, range check ptr, ecdsa ptr :
— SignatureBuiltin*,

carried state : CarriedState*, outputs : PerpetualOutputs*):

ABDK 47

CVF-83 INFO

« Category Readability * Source update_position.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

18 func is asset id tradable(
range check ptr, synthetic asset id, synthetic delta,
20 global funding indices : FundingIndicesInfo*, oracle prices
< : OraclePrices*) -> (
range check ptr, return code):

56 | func update position(
range check ptr, position : Position*, request public key,
— collateral delta,
synthetic asset id, synthetic delta, global funding indices
< : FundingIndicesInfo*,
oracle prices : OraclePrices*, general config :
— GeneralConfig*) -> (
60 range check ptr, updated position : Position*,
— funded position : Position*, return code):

150 func update position in dict(

range check ptr, positions dict : DictAccess*, position id,
— request public key,

collateral delta, synthetic asset id, synthetic delta,

global funding indices : FundingIndicesInfo*, oracle prices
< 1 OraclePrices*,

general config : GeneralConfig*) -> (

range check ptr, positions dict : DictAccess*,
— funded position : Position*,

updated position : Position*, return code):

ABDK 48

26

35

160

23

CVF-84 INFO

« Category Suboptimal * Source update_position.cairo

Description The regular search function makes a number of range checks to find an
element. In order to check if the element is present in an N-element array, at most N
constraints is needed even for an unsorted array.

Client Comment Will be added to a future version of cairo. We will then update the
perpetual code to use that version.

let (, success) search sorted{range check ptr=range check ptr}(

let (, success) = search sorted{range check ptr=range check ptr}(

CVF-85 FIXED
» Category Documentation » Source update_position.cairo
Description The dict manager functionality is not documented.

%{ ids.initial position = dict manager.get dict(ids.positions dict
<)[ids.position id] %}

CVF-86 FIXED

o Category Documentation » Source find_element.cairo

Description It might be helpful to know which element out of many is returned in practice:
first, last, medium, etc.

search for it.

ABDK 49

90

114

17

50

66

106

CVF-87 INFO

« Category Suboptimal * Source position.cairo

Recommendation Consider using implicit arguments for readability.
Client Comment This change is big, we will consider to apply in future versions.
func position add collateral(range check ptr, position : Position*,

— delta, public key) -> (
range check ptr, position : Position*, return code):

func position get asset balance(range check ptr, position : Position

— *, asset id) -> (
range check ptr, balance):

CVF-88 INFO

» Category Bad naming * Source hash.cairo

Recommendation Consider renaming "pedersen_ptr” into "hash_ptr"” to make "hash2”
invocations more convenient.

Client Comment This change is big, we will consider to apply in future versions.
func position hash assets{pedersen ptr : HashBuiltin*}(

func position hash{pedersen ptr : HashBuiltin*}(position : Position
<+ *) -> (position hash):

func hash position updates inner{pedersen ptr : HashBuiltin*}(

func hash position updates{pedersen ptr : HashBuiltin*}(update ptr :
< DictAccess*, n updates) -> (

ABDK 50

CVF-89 INFO

« Category Procedural e Source hash.cairo
Description This function implements its own construction of a variable-input-length

hash function based on a fixed-length compression function ‘hash2’. This is error prone
as all such constructions should be domain-separated to avoid collisions between.

Recommendation Consider extracting the data to be hashed to a single array and hash it
using only a predefined set of VIL hash functions from the common library.

Client Comment We can not make this change because it will change the hashes in the
position tree.

50 | func position hash{pedersen ptr : HashBuiltin*}(position : Position
< *) -> (position hash):

CVF-90 FIXED

o Category Readability e Source hash.cairo
Description This should be replaced with and "alloc()" call.

109 %{ ids.hashed updates ptr = segments.add() %}

ABDK 51

CVF-91INFO

« Category Readability e Source funding.cairo

Recommendation Consider using implicit arguments to improve readability.

Client Comment This change is big, we will consider to apply in future versions.

28 func apply funding inner(

30

range check ptr, assets before : PositionAsset*, n assets,
global funding indices : FundingIndicesInfo*,

— current collateral fxp,
assets after : PositionAsset*) -> (range check ptr,

— collateral fxp):

76 func position apply funding(

32

37

115

range check ptr, position : Position*,
— global funding indices : FundingIndicesInfo*) -> (
range check ptr, position : Position*):

CVF-92 FIXED

« Category Readability » Source funding.cairo
Recommendation Consider using a high-level "if” statement to improve readability.
jmp body if n assets != 0

body:

CVF-93INFO

o Category Unclear behavior » Source funding.cairo

Description Current timestamp is not taken into account, is it OK?

Client Comment Yes, the funding_timestamp field is used in order to not keep the entire
funding indices array in the position (The place we need this optimization is where we
serialize the position changes).

funding timestamp=global funding indices.funding timestamp)

PN

ABDK 52

CVF-94 INFO

« Category Readability * Source
validate_state_transition.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

19 func check valid transition(
20 range check ptr, updated position : Position*,
< initial position : Position*,
oracle prices : OraclePrices*, general config
— GeneralConfig*) -> (
range check ptr, return code):

CVF-95INFO

+ Category Readability » Source status.cairo

Recommendation Consider using implicit arguments for readability

Client Comment This change is big, we will consider to apply in future versions

16 func position get status inner(
range check ptr, assets : PositionAsset*, n_assets,
— oracle prices : OraclePrices*,
general config : GeneralConfig*, total value rep,
— total risk rep) -> (
range check ptr, total value rep, total risk rep):

80 func position get status(
range check ptr, position : Position*, oracle prices
— OraclePrices*,
general config : GeneralConfig*) -> (
range check ptr, total value rep, total risk rep,
— return_code):

ABDK

53

CVF-96 FIXED
« Category Readability * Source status.cairo

Recommendation Consider using a high-level "if" statement for readability.
20 jmp body if n assets != 0

26 body:

CVF-97 INFO

o Category Unclear behavior » Source status.cairo

Description What if this will happen for a position due to funding payments? Will this
position be locked?

Client Comment Yes. Firstly, applying funding to a position doesn’t change it in any way.
We should’ve changed every position during the funding tick but because it is inefficient
we have this caching mechanic. Secondly, Because we don't expect a position to have
out of bounds TV/TR, we give ourselves the freedom to define such position as "frozen”
(meaning that it can’t be changed in any way)

98 if res ==
return (
100 range check ptr=range check ptr,
total value rep=0,
total risk rep=0,
return_code=PerpetualErrorCode.OUT OF RANGE TOTAL VALUE)
end

ABDK 54

CVF-98 INFO
« Category Suboptimal * Source status.cairo

Description The value "TR_UPPER_BOUND" is 27128, so the "is_nn" function could be
used instead of "is_le".

Client Comment While | agree this isn’t optimal, this is way more readable and maintainable
(for the day we change TR_UPPER_BOUND)

107 let (res) = is le{range check ptr=range check ptr}(total risk rep,
< TR _UPPER BOUND REP - 1)

CVF-99 INFO

o Category Unclear behavior » Source serialize_change.cairo

Recommendation Consider checking this assumption via a static assert.

Client Comment There’s no easy way doing this currently.

13 # ASSET ID UPPER BOUND * (BALANCE UPPER BOUND -
— BALANCE LOWER BOUND) < PRIME.

CVF-100INFO

o Category Readability e Source serialize_change.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions

31 func serialize position change inner(
range check ptr, output ptr : felt*, n prev position assets,
prev_position assets : PositionAsset*, n new position assets
—
new position assets : PositionAsset*) -> (range check ptr,
— output ptr : felt*):

91 func serialize position change(range check ptr, output ptr : felt*,
— dict access : DictAccess*) -> (
range check ptr, output ptr : felt*):

PN

ABDK 55

CVF-101INFO

« Category Suboptimal » Source serialize_change.cairo

Description These two code chunks basically do the same. Consider refactoring the code
to avoid duplication.

Client Comment This is over complication. There is no need to create another function
for this.

45 with output ptr:
serialize asset(asset id=new asset id, balance=

< new_position assets.balance)
end

77 with output ptr:
serialize asset(asset id=new position assets.asset id, balance=

< new position assets.balance)
end

CVF-102 INFO

« Category Readability * Source
check_smaller_holdings.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

8 func check smaller_in synthetic holdings inner(
range check ptr, n updated position assets,
— updated position assets : PositionAsset*,
10 n_initial position assets, initial position_ assets
< PositionAsset*) -> (
range check ptr, return code):

79 func check smaller in synthetic holdings(
80 range check ptr, updated position : Position*,
< 1initial position : Position*) -> (
range check ptr, return code):

ABDK 56

CVF-103 FIXED

+ Category Documentation » Source
check_smaller_holdings.cairo

Description The check passes when one position is zero and the other is not. Strictly
speaking, in this case the position signs are different.

Recommendation Consider rephrasing like: Check that updated_balance and initial_bal -
ance have the same sign or one of the balances is zero.

43 # Check that updated balance and initial balance have the same sign.

CVF-104 INFO

o Category Readability e Source add_asset.cairo

Recommendation Consider using implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

13 func get old asset(
range check ptr, asset ptr : PositionAsset*, asset found,
global funding indices : FundingIndicesInfo*, asset id) -> (
range check ptr, balance, funding index, return code):

51 func add asset inner(
range check ptr, n assets, assets ptr : PositionAsset*,
< res _ptr : PositionAsset*,
global funding indices : FundingIndicesInfo*, asset id,
— delta) -> (
range check ptr, end ptr : PositionAsset*, return code):

122 func position add asset(
range check ptr, position : Position*,
— global funding indices : FundingIndicesInfo*,
asset id, delta, public key) -> (range check ptr, position
— Position*, return code):

ABDK 57

CVF-105 FIXED

« Category Suboptimal + Source add_asset.cairo

Description It seems that there could be at most one asset with given "asset_id" in the
array. If so, performing the second search just to find the right_start_ptr is redundant.
Simply assign right_start_ptr = left_end_ptr + PositionAsset.SIZE in case the left_start_ptr
points to the position whose asset is "asset_id"”, and assign right_start_ptr = left_end_ptr
otherwise.

61 let (right start ptr : PositionAsset*) = search sorted lower{
— range_check ptr=range check ptr}(

array ptr=assets ptr, elm size=PositionAsset.SIZE, n elms=
— n_assets, key=asset id + 1)

CVF-106 FIXED

o Category Unclear behavior » Source add_asset.cairo

Description Is this equivalent to an "alloc” call?

133 local res assets ptr : PositionAsset*
%{ 1ds.res assets ptr = segments.add() %}

ABDK 58

CVF-107 INFO

« Category Readability + Source data_availability.cairo

Description These functions should use implicit arguments for readability.
Client Comment This change is big, we will consider to apply in future versions.
17 func output changed positions(
range check ptr, output ptr : felt*, squashed dict

— DictAccess*, n_entries) -> (
range check ptr, output ptr : felt*):

35 func output availability data(
range check ptr, output ptr : felt*, squashed state :
< SquashedCarriedState*,
perpetual outputs start : PerpetualOutputs*,
— perpetual outputs end : PerpetualOutputs*) -> (
range check ptr, output ptr : felt*):

CVF-108 INFO

« Category Unclear behavior « Source signature.cairo

Description Is it possible to derive the public key from a message and a signature? If so,
then public key could be make a result rather than an argument of this function.

Client Comment We don't have a usecase where we don’t have the public key, therefore
it is easier to do it this way.

8 message, public key, signature r, signature s):

CVF-109 INFO

o Category Unclear behavior » Source signature.cairo

Description Why there is no "v" (sign) value?

Client Comment We use the curve point as a public key, therefore we dont need a sign
value.

8 message, public key, signature r, signature s):

PN

ABDK 59

CVF-110INFO

« Category Suboptimal * Source serialize.cairo

Description When serializing structures, this functions is often called several times.
Consider implementing efficient version of this functions that serialize several words
atonce, i.e. 2, 3, 4, etc. This would make serialization more efficient.

Client Comment We prefer readability over performance in this case. Further more, we
plan to support function inlining in the future and then this code will be more efficient than
a function that serializes several words.

2 func serialize word{output ptr : felt*}(word):

CVF-111INFO

« Category Unclear behavior e Source oracle_price.cairo

Description The "%[...%]" syntax is not documented. It is unclear what does it mean.

Client Comment This syntax is deprecated in newer Cairo versions. What it basically
means is that the compiler interprets the code inside the %[...%1] as a python command
that is expected to return an integer and the compiler changes the code as if that integer
was written there.

48 const TIMESTAMP BOUND = %[2**32%]

ABDK 60

CVF-112INFO

o Category Readability e Source oracle_price.cairo

Description These functions should use implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

57 | func check price signature(
range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin*,
time bounds : TimeBounds*, asset info : SyntheticAssetInfo*,
< median price,
60 collateral resolution, sig : SignedOraclePrice*) -> (
range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin*, is le, is ge):

144 func check oracle price inner(

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin¥*,

time bounds : TimeBounds*, asset info : SyntheticAssetInfo*,
— median price,

collateral resolution, sig : SignedOraclePrice*, n sigs,
— last _signer, n le, n ge) -> (

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin*, n le, n_ge):

192 func check oracle price(

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin*,

time bounds : TimeBounds*, asset oracle price :
— AssetOraclePrice*,

asset _info : SyntheticAssetInfo*, collateral info :
— CollateralAssetInfo*) -> (

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
<~ HashBuiltin*):

231 func check oracle prices inner(

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
< HashBuiltin*, n oracle prices,

asset oracle prices : AssetOraclePrice*,
< n_synthetic assets info,

synthetic assets info : SyntheticAssetInfo*, time bounds :
< TimeBounds*,

general config : GeneralConfig*) -> (

range check ptr, ecdsa ptr : SignatureBuiltin*, hash ptr :
— HashBuiltin*):

(286)

ABDK 61

118

120

131

140

284

CVF-113 FIXED

+ Category Documentation » Source oracle_price.cairo

Description This assumes that the denominator is even.

Recommendation Consider explaining why this is true.

Add denominator/2 to round.
let (internal price,) = unsigned div rem{range check ptr=
— range_check ptr}(
numerator + denominator / 2, denominator)

CVF-114 INFO

o Category Suboptimal e Source oracle_price.cairo

Description One of ‘is_le’ and ‘is_ge' is redundant. Just return ‘'median_comparison’

Client Comment This change is big, we will consider to apply in future versions

is le=1,
is ge=1)

is le=1 - is ge,
is ge=is ge)

CVF-115 FIXED

+ Category Documentation » Source oracle_price.cairo

Description It is unclear what 'valid’ means. The code implies that the asset ids of oracle
prices are the subset of synthetic asset ids.

Checks that a list of AssetOraclePrice instances are valid with
— respect to a GeneralConfig and a

ABDK 62

CVF-116 FIXED

« Category Readability * Source objects.cairo

Description There seems to be ‘get_label_location’ function for the same purpose

25 get fp and pc()
let pc = [fp + 1]

28 ret pc label:

33 callback=funding index serialize + pc - ret pc label)

CVF-117 INFO

o Category Readability » Source objects.cairo

1

Description This looks like a hack. Why not accessing the necessary information by ‘data
input?

Client Comment This trick reduces the amount of steps we have in the function. Instead
of creating a new OraclePrices object, we get it from the arguments of the function as
explained in new added comment.

54 return (oracle prices=cast(fp val - 2 - OraclePrices.SIZE,
— OraclePrices*))

CVF-118 INFO

+ Category Documentation * Source perpetual_error_code.cairo

Description Namespaces are not described in the documentation.

Client Comment We are working on documenting the namespace feature.

4 namespace PerpetualErrorCode:

ABDK 63

38

16

CVF-119 INFO

+ Category Documentation * Source perpetual_error_code.cairo

Description This trick is not described in the documentation.

Client Comment There’s no trick here. The only thing this does is that if the program
failed the error code that made it fail will appear in a hint variable. This is for internal use
in our tests to know the failure reason.

If not, the function will put the error code in a hint variable
— before exiting.

CVF-120INFO

o Category Bad naming e Source cairo_builtins.cairo

Description The structure does not contain the signature itself nor the result of its verifi-
cation. Perhaps it should be named differently.

Client Comment This change is big, we will consider to apply in future versions.

A representation of a SignatureBuiltin struct, specifying the
— signature builtin memory structure.

CVF-121INFO

o Category Documentation » Source cairo_builtins.cairo

Description This builtin is not documented.

Client Comment This builtin does not exist in the current version of Cairo.

struct CheckpointsBuiltin:

ABDK 64

CVF-122 INFO

+ Category Documentation » Source cairo_builtins.cairo

Description It is unclear what ‘required’ is.

Client Comment This builtin does not exist in the current version of Cairo.

17 member required pc : felt
member required fp : felt

CVF-123 FIXED

+ Category Documentation » Source hash_state.cairo

Description Semantics of the output value is unclear
16 func hash init() -> (hash state ptr : HashState*):
73 | func hash_update{hash ptr : HashBuiltin*}(

87 | func hash update single{hash ptr : HashBuiltin*}(hash state ptr :
< HashState*, item) -> (

CVF-124 INFO

o Category Documentation » Source hash_state.cairo

Description There is no link for it

Client Comment hash_update is in the same file, | don't see a reason to include a link.

25 # A helper function for 'hash update', see its documentation.

ABDK 65

26

28

30

CVF-125 FIXED

+ Category Documentation » Source hash_state.cairo

Description This comment is confusing. The function actually computes H(...
H(H(hash,data[0]),data[1]),..),data[n-1])

Computes the hash of an array of items, not including its length.

CVF-126 INFO

o Category Bad naming » Source hash_state.cairo

Description Variable names are confusing. Consider using ‘input_state' and ‘output_state'

Client Comment See CVF-153.

data ptr : felt*, data length : felt, hash : felt) -> (hash : felt):

CVF-127 INFO

o Category Readability » Source hash_state.cairo

Description Such code practice is highly discouraged
Recommendation Consider using different names

Client Comment See CVF-153.

return (hash=hash)

ABDK 66

34

35

53

60

CVF-128 INFO

« Category Suboptimal * Source hash_state.cairo

Description This variable is redundant as it is used only once.

Client Comment We use a variable to avoid computing data_last_ptr in each iteration.
The code is more efficient that way. Added a comment.

local data last ptr : felt* = data ptr + data length - 1

CVF-129 INFO

« Category Suboptimal * Source hash_state.cairo

Description The only loop variable needed is the current data index. All other variables
could be easily derived from this value.

Client Comment This doesn’t make the code more optimal, see CVF-119.

struct LooplLocals:
member data ptr : felt*
member hash ptr : HashBuiltin*
member cur_hash : felt

end

CVF-130INFO

o Category Suboptimal » Source hash_state.cairo

Description These two assertions can be merged and thus make the variable ‘cur_hash’
needless.

Client Comment This doesn’t make the code more optimal, see CVF-119.

prev_locals.hash ptr.x = prev _locals.cur hash

next locals.cur hash = prev locals.hash ptr.result; ap++

ABDK 67

CVF-131INFO

« Category Suboptimal + Source hash_chain.cairo

Description This structure could be simplified. Actually, the only loop variable required
is the current data index (starting from "data_length - 1" and decreasing till zero). All
other variables could be easily derived from this only variable: loop_data_ptr = data_ptr
+ data_index + 1 loop_hash_ptr = hash_ptr + data_index * HashBuiltin.SIZE cur_hash =
hash_ptr + cast(data_index * HashBuiltin.SIZE + HashBuiltin.SIZE, HashBuiltin*).result In
such approach the very first iteration should be treated differently, as it uses the last data
element instead of the previous hash result.

Client Comment This doesn’t make the code more optimal, see CVF-119.
9 struct LooplLocals:
10 member data ptr : felt*
member hash ptr : HashBuiltin*

member cur _hash : felt
end

CVF-132 FIXED

+ Category Bad naming e Source hash_chain.cairo
Description Should be ‘data_length_ptr’

15 let data length = ap

ABDK 68

30

34

39
40

70

CVF-133 INFO

« Category Readability + Source hash_chain.cairo

Description For readability it is better to allocate a single struct per loop that contains all
variables for given iteration, and increase ap just once by its size.

Client Comment This code is deprecated and hash_state should be used instead. We've
kept it because there are other places that still use it and didn’t got migrated to hash_state
yet (This should be a task for Lior’s team).

[new data] = [new data ptr]; ap++
[new data] = current hash.x; ap++
next frame.data ptr = new data ptr; ap++

next frame.hash ptr
next frame.cur_hash

curr_frame.hash ptr + HashBuiltin.SIZE; ap++
current hash.result; ap++

CVF-134 FIXED

o Category Documentation » Source general_config_hash.cairo
Description Should be "this asset”.

A synthetic asset entry contaning tis asset id and its config's,,
— hash.

[]

CVF-135 FIXED

« Category Unclear behavior » Source general_config_hash.cairo

Description This assert doesn't guarantee that all the fields were hashed, because some
fields are taken from the structs referred via pointer and some fields are actually not
hashed.

Recommendation Consider also asserting the number of fields in the referred structs:
"CollateralAssetinfo” and "FeePositionInfo”. Also, consider explaining in a comment, why
synthetic assets information is not hashed.

static assert GeneralConfig.SIZE ==

PN

ABDK 69

CVF-136 FIXED

« Category Unclear behavior » Source general_config_hash.cairo

Description This code seems to allocate a chunk of memory. Is there a more elegant way
to do this?

101 %{
ids.asset configs = asset configs = segments.add()
segments.finalize(
asset configs.segment index,
ids.general config ptr.n synthetic assets info * ids.
— AssetConfigHashEntry.SIZE

o°
a¥

ABDK 70

CVF-137 INFO

« Category Unclear behavior » Source constants.cairo

Description The "%[...%]" syntax is not documented. It is unclear what does it mean.

Client Comment This syntax is deprecated in newer Cairo versions. What it basically
means is that the compiler interprets the code inside the %/[...%] as a python command
that is expected to return an integer and the compiler changes the code as if that integer
was written there.

8 const ASSET ID UPPER BOUND = %[2**120%]

11 const BALANCE UPPER BOUND = %[2**63%]

%[2*%*63%]
-%[2**63%]

14 const TOTAL VALUE UPPER BOUND
const TOTAL VALUE LOWER BOUND

17 const TOTAL RISK UPPER BOUND = %[2**64%]

19 const N ASSETS UPPER BOUND = %[2**16%]

20 const POSITION MAX SUPPORTED N ASSETS = %[2%*6%]

23 | const FXP 32 ONE = %[2**32%]

26 | const EXTERNAL PRICE FIXED POINT UNIT = %[10%*18%]

28 | const ORACLE PRICE QUORUM LOWER BOUND = S[1%]
const ORACLE PRICE QUORUM UPPER BOUND = %[2**32%]

31 | const POSITION ID UPPER BOUND = %[2**64%]
const ORDER ID UPPER BOUND = %[2**64%]

34 const FUNDING INDEX UPPER BOUND
const FUNDING INDEX LOWER BOUND

%[2**63%]
-%[2**63%]

38 | const RISK FACTOR LOWER BOUND = %[1%]
43 const PRICE_UPPER BOUND = %[2**64%]

45 | const EXTERNAL PRICE UPPER BOUND = S%[2**120%]
(47, 52)

PN

ABDK 71

CVF-138 FIXED

« Category Unclear behavior * Source merkle_multi_update.cairo

Description This relies on undocumented compiler behavior that is subject to change.

Recommendation Consider refactoring the code to make it more predictable.

145 # Locals 0 and 1 are taken by non deterministic jumps.

CVF-139 FIXED
o Category Suboptimal » Source merkle_multi_update.cairo
Description These variables are used only once and can be eliminated
148 local left index = index * 2; ap++

162 tempvar height minus 1 = height - 1

CVF-140 FIXED

o Category Readability e Source merkle_multi_update.cairo

Description In the former case the expressions "height - 1" and "index * 2" are inlined,
while in the forder case the very same expression are precomputed and accessed by
references.

Recommendation Consider using consistent approach in both cases.
156 merkle multi update inner(

height=height - 1, prev root=hash0.x, new root=hashl.x, index=
< index * 2)

164 merkle multi update inner(
height=height minus 1, prev root=hash0.y, new root=hashl.y,
— index=local left index + 1)

ABDK 72

11

19

35

52

79

CVF-141 INFO
« Category Procedural » Source dict.cairo
Description We did not audit this witness generation file.

from starkware.cairo.common.dict import DictManager

CVF-142 FIXED
o Category Unclear behavior » Source dict.cairo
Description It is unclear what "initial_dict" is.

memory[ap] = dict manager.new dict(segments, initial dict)
del initial dict

CVF-143 INFO

o Category Documentation » Source dict.cairo

Description The semantics of the implicit argument is unclear.

Client Comment The documentation about implicit arguent (not as part of a builtin) will
be added to a future version of cairo.

func dict read{dict ptr : DictAccess*}(key : felt) -> (value : felt)
—

func dict write{dict ptr : DictAccess*}(key : felt, new value : felt
—)

func dict update{dict ptr : DictAccess*}(key : felt, prev value :
— felt, new value : felt):

func dict squash{range check ptr}(

ABDK 73

CVF-144 FIXED

« Category Unclear behavior e Source dict.cairo

Description Why do we have ‘assert’ in one function and do not in the other?

Recommendation Consider using the same approach.

42 assert dict ptr.key = key
assert dict ptr.new value = new value

64 dict ptr.key = key

66 dict ptr.new value = new value

CVF-145 INFO

+ Category Procedural » Source squash_dict.cairo

Description Passing the array length is more natural than the second pointer

Client Comment This change is big and of relatively low priority.

25 |dict accesses : DictAccess*, dict accesses end : DictAccess*,

CVF-146 FIXED
+ Category Readability * Source squash_dict.cairo
Description Defining local variables like this is hard ot read and error-prone.
36 let first key = [fp + 1]

let big keys = [fp + 2]
ap += 2

ABDK

74

CVF-147 INFO

+ Category Bad naming » Source squash_dict.cairo

Description Here four different variables have the same name.
Recommendation Consider renaming for readability.

Client Comment See CVF-153.
68 squashed dict=squashed dict,

71 return (squashed dict=squashed dict)

CVF-148 INFO

« Category Unclear behavior e Source squash_dict.cairo

Description The function returns the address of the first allocated element after
‘squashed_dict’, which is likely useless.

Recommendation Consider dropping this returned value.

Client Comment |t is in use.

93 # squashed dict - end pointer to squashed dict.

CVF-149 INFO

+ Category Readability + Source squash_dict.cairo

Description Passing the total dict length instead of dict_accesses_end_minusl1 would
make the code more readable

Client Comment This might be fixed in a future cairo version.

95 | range check ptr, dict accesses : DictAccess*,
— dict accesses end minusl : felt*, key,
remaining accesses, squashed dict : DictAccess*, big keys) -> (

ABDK 75

106

148

150

162

167

CVF-150 INFO

« Category Suboptimal + Source squash_dict.cairo

Description This variable is redundant as it is always a linear function of the previous one.

Client Comment This doesn’t make the code more efficient, see CVF-119.

member index delta : felt

CVF-151 FIXED

o Category Documentation » Source squash_dict.cairo

Description It is unclear from the code what the last allocated variables are.

Recommendation Consider adding comments

let prev_loop locals = cast(ap - LoopLocals.SIZE, LoopLocals*)
let loop temps = cast(ap, LoopTemps*)
let loop locals = cast(ap + LoopTemps.SIZE, LoopLocals*)

CVF-152 INFO

o Category Readability e Source squash_dict.cairo

Description The values are allocated in the order different from their order in the struct
declaration.

Recommendation Consider using the right order.

Client Comment The second line depends on the first one, switching them will be less
efficient.

loop locals.access ptr = prev_loop locals.access ptr + loop temps.
— ptr _delta; ap++

loop locals.value = access.new value; ap++

ABDK 76

185

200

210

212

217

219

CVF-153 INFO

« Category Readability + Source squash_dict.cairo

Description Using the range check pointer evolution to track the number of accesses
makes code less readable.

Client Comment We do that for optimization. Added a comment .

tempvar n _used accesses = last loop locals.range check ptr -
< range check ptr

CVF-154 FIXED

o Category Documentation » Source squash_dict.cairo

Description There should be a comment that ap points to the address of the next access
in the original list.

let next key = [ap]

CVF-155INFO

o Category Readability » Source squash_dict.cairo

Description Code of form ‘a=a’ looks weird.
Recommendation Consider using distinct variable names

Client Comment The syntax a=a is rather natural in cairo: We use the syntax a=a in cairo
for reference rebinding because the memory in cairo is immutable. This is equivalent to
variable assignments in other languages.

tempvar dict accesses = dict accesses

tempvar next key = next key
tempvar remaining accesses = remaining accesses

tempvar dict accesses = dict accesses

tempvar next key = next key

PN

ABDK 77

18

3

CVF-156 INFO

« Category Suboptimal + Source memcpy.cairo

Description This function copies one word per iteration, which is suboptimal.

Recommendation Consider copying several words, such as 8 or 16 per iteration. In case
the length is not a factor of the number of words copied per iteration, the output could
either be padded or a separate tail loop could be used to copy the remainder.

Client Comment Will be added to a future version of cairo. We will then update the
perpetual code to use that version.

func memcpy(dst : felt*, src : felt*, len):

CVF-157 INFO

o Category Suboptimal » Source memcpy.cairo

Description Using a struct is redundant: a mere counter suffices.

Client Comment This doesn’t make the code more efficient, see CVF-119.

let frame = cast(ap - LoopFrame.SIZE, LoopFrame*)

CVF-158 FIXED

« Category Procedural e Source program_input.cairo

Description CarriedState object is not used in this file

from services.perpetual.cairo.state.state import CarriedState,
— SharedState

ABDK 78

24

52

80

84

15

17

CVF-159 INFO

« Category Procedural » Source forced.cairo

Description There is ‘get_label_location’ method for this

Client Comment We're using the fp and not the pc here. For more explanation why, see
the comment on CVF-110.

func forced withdrawal action new(public key, position id, amount)
— ->

func forced trade action new(

CVF-160 INFO

» Category Suboptimal » Source forced.cairo
Recommendation Consider replacing the "if” statement with an assert like this: assert

forced_type = ForcedActionType.FORCED_TRADE This would make the false "asssert” and
"imp" statements redundant.

Client Comment This way it is consistant with other parts of our code, and will be easier
to add more cases that way.

if forced type == ForcedActionType.FORCED TRADE:

assert 1 =0
jmp rel 0

CVF-161INFO

o Category Suboptimal * Source hash.cairo

Description These two operations can be merged in a more readable ‘return re-
sult=(hash_ptr-HashBuiltin.SIZE).result

Client Comment We chose to stay with the current implementation.

let result = hash ptr.result

return (result=result)

PN

ABDK 79

CVF-162 INFO

+ Category Bad naming » Source order.cairo

Description The argument is a message encoding rather than a message hash.

Client Comment The argument is a message hash, we extract the order_id from the first
64 bits of the hash.

12 # Extracts the order id from the message hash.

CVF-163 INFO

« Category Suboptimal + Source order.cairo

Description This assumption is redundant if the previous one holds

Client Comment We chose to keep it.

17 # 0 <= message hash < SIGNED MESSAGE BOUND.

ABDK 80

CVF-164 INFO

« Category Readability * Source order.cairo

Recommendation Consider using an implicit argument for the range check pointer to
improve readability.

Client Comment This change is big, we will consider to apply in future versions.

18 func extract order id(range check ptr, message hash) -> (
< range check ptr, order_id):

71 | func update order fulfillment(
range check ptr, orders dict : DictAccess*, message hash,
— update amount, full amount) -> (
range check ptr, orders dict : DictAccess*):

110 func validate order _and update fulfillment(

range check ptr, ecdsa ptr : SignatureBuiltin*, orders dict
< : DictAccess*, message hash,

order : OrderBase*, min expiration timestamp, update amount,
— full _amount) -> (

range check ptr, ecdsa ptr : SignatureBuiltin*, orders dict
— : DictAccess*):

CVF-165 INFO

« Category Bad naming e Source
signature_message_hashes.cairo

Description Renaming the "pedersen_ptr” implicit argument into "hash_ptr"” would allow
makeing the code cleaner and easier to read.

Client Comment This change is big, we will consider to apply in future versions.

37 func limit order hash{pedersen ptr : HashBuiltin*}(limit order :
< ExchangeLimitOrder*) -> (

99 func transfer hash{pedersen ptr : HashBuiltin*}(transfer :
— ExchangeTransfer*, condition : felt) -> (

PN

ABDK 81

CVF-166 INFO

+ Category Bad naming » Source
signature_message_hashes.cairo

Description The function should be called ‘exchange_limit_order_hash’

Client Comment This change affects another project so we decided to leave it like that.

37 func limit order hash{pedersen ptr : HashBuiltin*}(limit order :
— ExchangeLimitOrder*) -> (

CVF-167 FIXED

+ Category Procedural + Source
signature_message_hashes.cairo

Description Constants defined inside functions are hard to find.

Recommendation Consider gathering all the constants in one place.

51 const LIMIT ORDER WITH FEES = 3

102 const TRANSFER ORDER TYPE = 4
const CONDITIONAL TRANSFER ORDER TYPE = 5

CVF-168 FIXED

o Category Suboptimal + Source
signature_message_hashes.cairo

Description This variable is used only once and can be eliminated
56 let expiration timestamp = limit order.base.expiration timestamp

58 expiration timestamp

ABDK 82

59

132

CVF-169 INFO

« Category Unclear behavior » Source
signature_message_hashes.cairo

Description The "%[...%]" syntax is not documented. It is unclear what does it mean.

Client Comment This syntax is deprecated in newer Cairo versions. What it basically
means is that the compiler interprets the code inside the %/[...%] as a python command
that is expected to return an integer and the compiler changes the code as if that integer
was written there.

let packed messagel packed messagel * %[2**17%] # Padding.

let packed messagel packed messagel * %[2**81%] # Padding.

CVF-170INFO

o Category Bad naming + Source
signature_message_hashes.cairo

Description These names look inconsistent with each other.

Recommendation Consider using names like: "fee_vault_id"”, "fee_asset_id"”, and
"fee_max_amount”.

Client Comment This change affects another project so we decided to leave it like that.

74 member src fee vault id : felt

member asset id fee : felt
member max_amount fee : felt

ABDK 83

CVF-171 FIXED

« Category Readability * Source
signature_message_hashes.cairo

Description This two-layer hash description is confusing.

Recommendation Consider describing like this: The hash is defined as h(h(h(h(w1, w2),
w3), w4, w5) for a normal transfer, where h is Starkware's Pedersen hash function and:
wl = asset_id w2 = asset_id_fee w3 = receiver_public_key w4 = sender_vault_id (64 bit)
|| receiver_vault_id (64 bit) || src_fee_vault_id (64 bit) || nonce (32 bit) w5 = 0x4 (15 bit)
|| amount (64 bit) || max_amount_fee (64 bit) || expiration_timestamp (32 bit) || 0 (81 bit)

82 # The hash is defined as h(h(wl, w2), w3) for a normal transfer,
< where h is Starkware's Pedersen
#,hash_ function_ and:
#.,.uwl = h(h(asset id, _asset id fee),. receiver public key)
#,00wW2,=,sender vault id, (64, bit),||ureceiver vault id, (64_bit)
#.uuuuuu | |usrce _fee vault id, (64.bit).||unonce, (32, bit)
#o00wW3L=,0x4,(15,bit) | |uamount, (64, bit) | |umax_amount fee (64, bit),,
— | |uexpiration timestamp, (32, bit)
#uuuuuuulluou(Slubit)

(N]

CVF-172 INFO

o Category Suboptimal * Source
signature_message_hashes.cairo

Description The brackets are redundant here.

Client Comment The brackets allow us to split the line into two line and avoiding a very
long line.

130 \flet packed messagel = (\
| packed_messagel * EXPIRATION TIMESTAMP UPPER BOUND + transfer.
| < base.expiration_ timestamp) |

ABDK 84

26

30

CVF-173 INFO

« Category Readability * Source validate_limit_order.cairo

Description This function should use implicit arguments for readability.

Client Comment This change is big, we will consider to apply in future versions.

func validate limit order fairness(

range check ptr, limit order : LimitOrder*,
— actual collateral, actual synthetic,
actual fee) -> (range check ptr):

CVF-174 FIXED

Description All this logic is implemented elsewhere, so this comment is irrelevant to the

o Category Documentation e Source limit_order.cairo

actual code below.

H W W HOH R R H H B W

HOoH KRR

limit order hash:
Computes the hash of a limit order.

The hash is defined as h(h(h(h(wl, w2), w3), w4), w5) where h is
— the

starkware pedersen function and wl,...w5 are as follows:

wl= token sell

w2= token buy

w3= token fee

w4= amount sell (64 bit) || amount buy (64 bit) || amount fee (64
— bit) || nonce (32 bit)

w5= 0x3 (10 bit) || vault fee src (64 bit) || vault _sell (64 bit)
— || vault _buy (64 bit)

| | expiration timestamp (32 bit) || 0 (17 bit)

Assumptions (bounds defined in services.perpetual.cairo.
< definitions.constants):

amount sell < AMOUNT UPPER BOUND

amount buy < AMOUNT UPPER BOUND

amount fee < AMOUNT UPPER BOUND

nonce < NONCE UPPER BOUND

position id < POSITION ID UPPER BOUND

expiration timestamp < EXPIRATION TIMESTAMP UPPER BOUND.

PN

ABDK 85

41

CVF-175INFO

+ Category Bad naming » Source limit_order.cairo

Description The name "hash_ptr"” would be move conventional and would allow using
functions from the standard library in a more convenient way.

Client Comment The name "hash_ptr” is used only when we want to emphasize that
another hash builtin can be used (for example, in hash2). In order to keep the code
consistent, we've changed all occurences of hash_ptr into pedersen_ptr in the perpetual
code as that application only uses pedersen .

func limit order hash{pedersen ptr : HashBuiltin*}(limit order :
< LimitOrder*) -> (limit order hash):

CVF-176 INFO

o Category Bad naming e Source order.cairo

Description A better name would be "Signature” as this structure doesn't have any fields
related to an exchange order.

Client Comment Aside from the signature, the struct contains nonce, public_key and
expiration_timestamp.

struct OrderBase:

CVF-177 INFO

» Category Unclear behavior » Source constants.cairo

Description The "%[...%]" syntax is not documented. It is unclear, what does it mean.

Client Comment This syntax is deprecated in newer Cairo versions. What it basically
means is that the compiler interprets the code inside the %/[...%] as a python command
that is expected to return an integer and the compiler changes the code as if that integer
was written there.

1 const AMOUNT UPPER BOUND = %[2**64%]

const EXPIRATION TIMESTAMP UPPER BOUND = %[2**32%]
const NONCE UPPER BOUND = %[2**32%]
const VAULT ID UPPER BOUND = %[2**64%]

PN

ABDK 86

49

85

49

70

CVF-178 INFO

+ Category Bad naming » Source small_merkle_tree.cairo

Description The function rather updates the tree than just creates it.
Recommendation Consider renaming.

Client Comment We don’t use this function but we fix internally.

func small merkle tree{hash ptr : HashBuiltin*}(

CVF-179 INFO

o Category Unclear behavior » Source small_merkle_tree.cairo

Description We didn't review this function that seems to do most of the work.

Client Comment There is no need to review this function.

ids.new root, ids.prev root, preimage = get preimage dictionary(

CVF-180 FIXED

o Category Documentation e Source merkle_update.cairo

Recommendation Consider adding comments why the division never overflows for height
<log p.

index=index / 2)

index=(index - 1) / 2)

ABDK 87

3

CVF-181INFO
« Category Unclear behavior e Source dict_access.cairo

Description The semantics of the struct fields is unclear

Client Comment Added documentation.

struct DictAccess:

CVF-182 INFO

o Category Unclear behavior » Source alloc.cairo

Description This Python APl is not documented.

Client Comment We expect users to call alloc() and not use this API.

%{ memory[ap] = segments.add() %}

ABDK

88

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk - consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Critical Issues
	CVF-1. FIXED
	CVF-2. FIXED
	CVF-3. FIXED

	Major Issues
	CVF-6. FIXED
	CVF-9. FIXED
	CVF-12. FIXED

	Moderate Issues
	CVF-7. INFO
	CVF-8. INFO
	CVF-13. FIXED
	CVF-14. FIXED
	CVF-15. FIXED
	CVF-16. FIXED
	CVF-17. FIXED
	CVF-18. FIXED
	CVF-19. FIXED
	CVF-20. FIXED
	CVF-21. INFO
	CVF-22. INFO
	CVF-23. INFO
	CVF-24. INFO
	CVF-25. FIXED

	Minor Issues
	CVF-26. FIXED
	CVF-27. INFO
	CVF-28. INFO
	CVF-29. INFO
	CVF-30. FIXED
	CVF-31. INFO
	CVF-32. FIXED
	CVF-33. FIXED
	CVF-34. FIXED
	CVF-35. INFO
	CVF-36. INFO
	CVF-37. INFO
	CVF-38. INFO
	CVF-39. INFO
	CVF-40. INFO
	CVF-41. INFO
	CVF-42. INFO
	CVF-43. FIXED
	CVF-44. FIXED
	CVF-45. INFO
	CVF-46. INFO
	CVF-47. INFO
	CVF-48. INFO
	CVF-49. FIXED
	CVF-50. FIXED
	CVF-51. INFO
	CVF-52. FIXED
	CVF-53. INFO
	CVF-54. INFO
	CVF-55. FIXED
	CVF-56. INFO
	CVF-57. INFO
	CVF-58. INFO
	CVF-59. INFO
	CVF-60. INFO
	CVF-61. INFO
	CVF-62. INFO
	CVF-63. INFO
	CVF-64. FIXED
	CVF-65. FIXED
	CVF-66. INFO
	CVF-67. INFO
	CVF-68. FIXED
	CVF-69. INFO
	CVF-70. INFO
	CVF-71. INFO
	CVF-72. INFO
	CVF-73. INFO
	CVF-74. FIXED
	CVF-75. INFO
	CVF-76. INFO
	CVF-77. INFO
	CVF-78. FIXED
	CVF-79. INFO
	CVF-80. INFO
	CVF-81. FIXED
	CVF-82. INFO
	CVF-83. INFO
	CVF-84. INFO
	CVF-85. FIXED
	CVF-86. FIXED
	CVF-87. INFO
	CVF-88. INFO
	CVF-89. INFO
	CVF-90. FIXED
	CVF-91. INFO
	CVF-92. FIXED
	CVF-93. INFO
	CVF-94. INFO
	CVF-95. INFO
	CVF-96. FIXED
	CVF-97. INFO
	CVF-98. INFO
	CVF-99. INFO
	CVF-100. INFO
	CVF-101. INFO
	CVF-102. INFO
	CVF-103. FIXED
	CVF-104. INFO
	CVF-105. FIXED
	CVF-106. FIXED
	CVF-107. INFO
	CVF-108. INFO
	CVF-109. INFO
	CVF-110. INFO
	CVF-111. INFO
	CVF-112. INFO
	CVF-113. FIXED
	CVF-114. INFO
	CVF-115. FIXED
	CVF-116. FIXED
	CVF-117. INFO
	CVF-118. INFO
	CVF-119. INFO
	CVF-120. INFO
	CVF-121. INFO
	CVF-122. INFO
	CVF-123. FIXED
	CVF-124. INFO
	CVF-125. FIXED
	CVF-126. INFO
	CVF-127. INFO
	CVF-128. INFO
	CVF-129. INFO
	CVF-130. INFO
	CVF-131. INFO
	CVF-132. FIXED
	CVF-133. INFO
	CVF-134. FIXED
	CVF-135. FIXED
	CVF-136. FIXED
	CVF-137. INFO
	CVF-138. FIXED
	CVF-139. FIXED
	CVF-140. FIXED
	CVF-141. INFO
	CVF-142. FIXED
	CVF-143. INFO
	CVF-144. FIXED
	CVF-145. INFO
	CVF-146. FIXED
	CVF-147. INFO
	CVF-148. INFO
	CVF-149. INFO
	CVF-150. INFO
	CVF-151. FIXED
	CVF-152. INFO
	CVF-153. INFO
	CVF-154. FIXED
	CVF-155. INFO
	CVF-156. INFO
	CVF-157. INFO
	CVF-158. FIXED
	CVF-159. INFO
	CVF-160. INFO
	CVF-161. INFO
	CVF-162. INFO
	CVF-163. INFO
	CVF-164. INFO
	CVF-165. INFO
	CVF-166. INFO
	CVF-167. FIXED
	CVF-168. FIXED
	CVF-169. INFO
	CVF-170. INFO
	CVF-171. FIXED
	CVF-172. INFO
	CVF-173. INFO
	CVF-174. FIXED
	CVF-175. INFO
	CVF-176. INFO
	CVF-177. INFO
	CVF-178. INFO
	CVF-179. INFO
	CVF-180. FIXED
	CVF-181. INFO
	CVF-182. INFO

